
 

55 Integral dependence and valuations
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5.2 the going up theorem
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85.3 integrally closed integral domains
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5 5.4 Valuation rings

D integraldomain K Trac B

Def B is called a valuation ring of K if
trek either REB or NEB

Why valuation T K B abeliang

8 x 281 14 My EB

V K I s is an valuation

N at b z min oca VCbs

u ab via to b

Roy 5.18 i B local

ii BEBEK B valuation ring

iii B is integral closed in K

Pf i M re B 2413 B B

WONTS M is an ideal

10 a EB seem an 4 B ax em

2 f x y em KyteB or yateB assumeKyteB

Key HRy Y E Bme M
14



ii clear

iii seek integral over B

sent b sent it bn o

Suppose R B WEB

x bi t bart thnx e B y

f k field AR algebraically closedfield

I Elk s A f A subring of k
yf A r ringhim

A R

Aif Aif É f a
11

A I

partial ordered set E E

f chain Ai fi lies in J

A is Yeti fola fila tae Ai

Aw fo is an upper bound of Ai.fi ie ink

assume I 0
Zorn's lemma F maximal element in E 15



Lemmas.iq let B g be a maximal element in E

Then B is localwith maximal ideal m Kerg

Pf Longer is integral
domain m prime

B T R

1 a d
Bm I s

B 9 maximal B Bm

B mylocal

Lemmy5.20 Ke k Then I 4 mean meat

Mix IouX c K Uiem O BE

ME Iovine ekIV em o BEN

Pf I hot he set t Unkk k minimal at here

I Vo t Vit't Vent e minimal at here

16 WMA k Zl



l Vo K V t Next l

V0EM 1 Vo E B KEWke't We

I not asset thank t upset will t we Y

Theorem5.21 B g maximal in I B valuation ring of K

Pf A seek assume 14 MIN O Bex B

F ME Em EB

clear mind m

K Blm G B m k k a

k k f ext

B k or

a 11t I
BET R cos

Big maximal B BED

REB

17



5.22 ACK subring F integral closureofA ink

I A B
AEBEK
B valuationrings

Pf E B B FEB B FERB

2 Fx A K A A at

t not wait in A

N'em's A

A A Alm Kerik

I Big maximal A r

231
R B or i xx no 4

My5.23 AEB integraldomains BIA fg

VE B so FUE A so Sit

A s with flutto

t
B s with giotto

18



Pf Wemay assume B AED

10 n transcendental over A

assume v hose't an t t an U Ao

f f with flu to i e flared

F EE I Sit

flaw E t fan to E r

A r

It
B

Rt
p

g

giv to

20 K is algebraic over A so is v4

dorm arm t t am o

bow t b o ht bn o

A

bit B

U hobo

19



tf A r with flat to
i.e flaw to flbol

A r

l H

f

y

197 fay
Ali r

t
c tr s a ah

x integral over ACut REACH e c

BEC

similarly vÉc ve c has to

g h

G 5.24 B f8 k alg Then

B field Blk finite af ext

20 Pf A k UH R R


